# Overview of Progress in Neutrino Scattering Measurements

M. Sorel, IFIC (CSIC and U. of Valencia)

Nulnt07, Fermilab, May 30 - June 3 2007

# **Scope and Cautionary Remarks**

#### Scope

Review progress in neutrino scattering measurements since NuInt01. Focus on:

- 0.1 < E<sub>y</sub> (GeV) < 10 neutrino energy range
- Neutrino rather than charged lepton (*B. Bradford*'s talk, this session) or pion/proton scattering data
- Recent data rather than recent development on neutrino scattering modeling (*C. Andreopoulos' talk, this session*)

#### **Cautionary Remarks**

- many of the results that will be shown are still preliminary and may change (starting from NuInt07!) in the future. Those are marked with throughout the talk
- direct comparisons between experiments are sometimes difficult.
   Tried to be explicit about assumptions used

#### **Outline**

- Neutrino experiments reporting recent progress
- Quasi-elastic scattering
- Resonant Pion Production
- Coherent Pion Production
- From resonance to DIS region
- Nuclear effects
- Future



Source: NEUT, NuInt05

## **Neutrino Experiments Reporting Recent Progress**

- K2K near:
  - 1KT (Cherenkov detector, water target, ~10<sup>5</sup> interactions)
  - *SciFi* (segmented tracker, water, ~10<sup>4</sup> interactions)
  - *SciBar* (segmented tracker, carbon, ~10<sup>4</sup> interactions)
- MiniBooNE (Cherenkov, mineral oil, ~10<sup>6</sup> interactions)
- NOMAD (spectrometer/calorimeter, carbon, ~106 interactions)
- MINOS near (magnetized tracking calorimeter, iron,  $\sim 10^6$  interactions)
- *Lar50* (Lar TPC, Ar, ~10<sup>4</sup> interactions)
- Reanalyses of BNL-7ft + GGM data (bubble chambers, deuterium and propane/freon,  $\sim 10^3$  interactions)

See Session 3 talks for details on most of these

# Quasi-Elastic Scattering



Llewellyn Smith formalism:

$$\frac{d\sigma}{dQ^2} = \frac{m_N^2 G_F^2 |V_{ud}|^2}{8\pi (\hbar c)^4 E_\nu^2} [A(Q^2) \pm B(Q^2) \frac{(s-u)}{m_N^2} + \frac{C(Q^2)(s-u)^2}{m_N^4}]$$

- (s-u)  $\sim 4 m_N^2 E_v Q^2$
- + for neutrinos, for antineutrinos
- A,B,C depend on two vector (f<sub>1</sub>, f<sub>2</sub>) and one axial vector (g<sub>1</sub>) form factors
- Q<sup>2</sup> dependence of axial vector form factor assumed to have dipole form:

$$g_1(Q^2) \approx \frac{1.25}{(1+Q^2/m_A^2)^2}, \ m_A$$
: axial mass

• Vector form factors: few % deviations from dipole form from electron scattering data (-> B. Bradford, this session), causing few % differences in CCQE cross section and axial mass extraction in recent analyses

#### **K2K-SciFi MA Result**



- Fit shape of Q<sup>2</sup> distribution in 1 track and 2 track QE-enriched CC samples
- Include 2 track nonQE-enriched CC sample to constrain background normalization
- Fit Q<sup>2</sup> in separate E<sub>v</sub> bins to constrain flux predictions
- Fit only  $Q^2 > 0.2 \text{ GeV}^2$  region to avoid large uncertainties due to nuclear effects
- Total sample ~ 7,000 events
- Axial mass result:  $M_A = (1.20 \pm 0.12) \text{ GeV}$ NuInt07

  M. Sorel IFIC (Valencia U. & CSIC)

# **Preliminary MiniBooNE CCQE**

• Preliminary axial mass result:  $M_A = (1.22 \pm 0.10)$  GeV Since then, analysis has been updated

(Source: J. Monroe, Columbia U. Ph.D. thesis, 2006)

- CCQE selection: contained CC events with single decay electron tag, correlated in space with muon track endpoint. 200,000 events with  $\sim$ 74% estimated CCQE purity
- Fit shape of Q<sup>2</sup> distribution, to measure both:
  - Axial mass
  - Parameter controlling strength of Pauli suppression in relativistic Fermi gas model

Achieve good data/MC agreement in CCQE kinematic distributions after tuning

these two parameters in MC







# **NOMAD CCQE Cross Section**

- Select CCQE events in  $3 < E_{\parallel} < 100$  GeV range by requiring:
  - Two tracks, one identified as  $\mu$ , other consistent with proton
  - Invariant hadronic mass: W < 1.76 GeV<sup>2</sup>
  - CCQE-like rather than background-like (RES, DIS) events, based on 3D likelihood
  - ~8,000 events, with ~71% estimated purity
- Preliminary CCQE cross section:  $\sigma(v_n -> \mu p) = (0.72 \pm 0.01) \, 10^{-38} \, cm^2$
- Error quoted is statistical-only
- Systematic uncertainty evaluation underway, expected to be dominated by nuclear effects
- Measured cross section is ~20% smaller than the world average of previous bubble chamber experiments

(Sources: R. Petti, Nuint05; V. Lyubushkin and B. Popov, Phys. Atomic Nucl. 69, 1876 (2006))



# **Quasi-Elastic Progress Since NuInt01**

- Recent CCQE models now typically use non-dipole vector form factors from electron scattering data, affecting at few % level MA extraction
- Given current accuracy, dipole approximation for axial FF seems OK
- MA values from recent Q<sup>2</sup> shape analyses (K2K-SciFi, prelim. MiniBooNE) are consistent with each other, but higher than historical world average
- Prelim. NOMAD CCQE cross section, using different method (DIS normalization), seems to suggest much lower MA values. Need to wait for full systematic error evaluation



Year

-> experimental biases, or MA parameter is not "universal"?

Look forward to new NuInt07 CCQE and NC elastic results (Session 5):

- F. Sanchez, "K2K QE Results from SciBar"
- T. Katori, "Charged-Current Interaction Measurements in MiniBooNE"
- C. Cox, "MiniBooNE NC-E Interactions"

#### **Resonance Production**



- Single pion production via excitation, and subsequent decay, of resonances of hadronic masses 1.08 < W (GeV) < 1.4-2.0
- 14 final states overall (6 CC, 8 NC):

| CC                                            |                                             | NC                                                       |                                              |
|-----------------------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| $\nu_{\mu}p \to \mu^{-}\Delta^{++}$           | $\Delta^{++} \to p\pi^+$                    | $ u_{\mu}p  ightarrow  u_{\mu}\Delta^{+}$                | $\Delta^+ \to p \pi^0, \Delta^+ \to n \pi^+$ |
| $\nu_{\mu}n \to \mu^{-}\Delta^{+}$            | $\Delta^+ \to p\pi^0,  \Delta^+ \to n\pi^+$ | $ u_{\mu}n  ightarrow  u_{\mu}\Delta^{0}$                | $\Delta^0 \to n\pi^0, \Delta^0 \to p\pi^-$   |
| $\overline{\nu}_{\mu}p \to \mu^{+}\Delta^{0}$ | $\Delta^0 \to n\pi^0,  \Delta^0 \to p\pi^-$ | $\overline{\nu}_{\mu}p \to \overline{\nu}_{\mu}\Delta^+$ | $\Delta^+ \to p \pi^0, \Delta^0 \to n \pi^+$ |
| $\overline{\nu}_{\mu}n \to \mu^{+}\Delta^{-}$ | $\Delta^- \to n\pi^-$                       | $\overline{ u}_{\mu}n \to \overline{ u}_{\mu}\Delta^0$   | $\Delta^0 \to n\pi^0, \Delta^0 \to p\pi^-$   |

- Rein and Sehgal formalism. Resonance production and decay matrix elements computed according to FKR model and resonance decay experimental input
- Transition form factor appearing in production amplitude:

$$G_A(Q^2) \approx (1 + Q^2/(4m_N^2))^{1/2-n} \frac{1}{(1 + Q^2/m_A^2)^2}, \ m_A$$
: single pion axial mass

# **Reanalyses of Bubble-Chamber Data**





- Good agreement found with R-S model (Source: K. Furuno, NuInt02)
- ANL data also reanalyzed and compared to R-S



- Reanalysis of GGM  $v_{\mu}p \rightarrow v_{\mu}p\pi^{0}$  data (~200 evts.) to extract absolute xsec (Source: E. Hawker, NuInt02)
- Good agreement found with R-S
- First absolute xsec measurement of NC  $\pi^0$  production at low energies

### **K2K-1KT NC Pi0 Production**





- Two e-like rings, 85-215 MeV invariant mass,  $\sim$ 2,500 events with  $\sim$ 71% purity
- Fully corrected  $\pi^0$  momentum distribution, normalized to fully contained sample, shows reasonable agreement with predictions
- NC  $\pi^0$  production cross section normalized to CC one:

$$\sigma(NC \pi^0)/\sigma(CC) = (0.064 \pm 0.001 \pm 0.007)$$
 at E<sub>v</sub> ~ 1.5 GeV

(Source: Phys. Lett. B619, 255 (2005))

#### MiniBooNE NC Pi0 Production

• Preliminary resonant NC  $\pi^0$  production cross section:

 $\sigma(v_{\mu}N \to v_{\mu}N\pi^{0}) = (1.28 \pm 0.11 \pm 0.43) \ 10^{-38} \ cm^{2}/CH_{_{2}}$  P ,at E<sub>v</sub>~1.3 GeV and flux extracted via CCQE sample

- Analysis updates since then on reconstruction, optical model, selection
- No decay electrons, e/ $\mu$  and e/ $\pi^0$  likelihood ratios favor e and  $\pi^0$  hypotheses, respectively,  $80 < m_{_{\gamma\gamma}} < 200$  MeV

(Source: J. Raaf, U. of Cincinnati Ph.D. thesis, 2005)

- ~20,000 events with >90% purity
- Default Monte Carlo underpredicts  $\pi^0$  production rate at low  $\pi^0$  momenta, but overall not bad



(Source: J. Conrad, B. Louis, FNAL Seminar, April 2007)

#### MiniBooNE CC Pi+ Production

- Select  $v_{\mu}N \rightarrow \mu^- N \pi^+$  events by requiring two decay electrons from  $\mu^- \rightarrow e^-$  and  $\pi^+ \rightarrow \mu^- \rightarrow e^-$  decays. ~44,000 events (3.3·10<sup>20</sup> pot), ~85% purity
- Neutrino energy from muon kinematics, assuming  $m(\Delta) = 1.23$  GeV resonance
- Normalize corrected  $CC\pi^+$  rate to CCQE one, to extract cross section ratio
- Get CC $\pi^+$  cross section by multiplying by NUANCE CCQE cross section prediction (M $_{_{\! A}}$ =1.03 GeV). ~25% lower than predictions, but comparable uncertainties



#### (Source: M. Wascko, NuInt05)



## **Resonance Production Progress Since NuInt01**

- A lot more data, clear example being NC  $\pi^0$  production shown here, for which we had no absolute xsec measurement before NuInt01
- Three recent results, reasonably consistent with each other:
  - reanalysis of GGM data (black, red)
  - $\sigma(NC \pi^0)/\sigma(CC)$  from K2K-1KT, multiplied here by NEUT CC xsec prediction (blue)
  - preliminary MiniBooNE resonant NC  $\pi^0$  xsec, with flux extraction via CCQE sample assuming MA=1.03 GeV (green)



- High statistics samples allow us to test in detail for the first time pion production kinematics. Our current modeling seems OK at the  $\sim$ 20% level
- Look forward to new NuInt07 resonant pion production results (Session 6):
  - J. Link, "Neutral Current pi0 Production at MiniBooNE"
  - B. Fleming, "Charged Current pi+ Production at MiniBooNE"
  - L. Whitehead, "Charged Current pi+ Production at K2K"
  - C. Mariani, "Neutral Pion Production Cross Sections at K2K"

## **Coherent Pion Production**



- Neutrino interacts coherently with nucleons bound in the nucleus, producing a pion
- Cross section expected to be smaller (up to  $\sim$ 20% for E $_{_{v}}\sim$ 1 GeV) than resonant pion production, but with distinct signature:
  - forward-scattered pion
  - no nuclear break-up
- Both CC and NC modes possible:  $\nu_{\mu} A -> \mu^{-} A \pi^{+}$ ,  $\nu_{\mu} A -> \nu_{\mu} A \pi^{0}$
- Neutrino and antineutrino coherent cross sections expected to be similar
- Theoretical models vary, but share general ideas:
  - Built on the basis of Adler's theorem, relating neutrino-nucleus cross section to pion-nucleus one, at  $Q^2=0$
  - Extrapolation to  $Q^2 \neq 0$  via propagator term governed by coherent axial mass,  $M_{_{\! A}} \sim 1\text{-}1.35$  GeV

### **K2K-SciBar CC Coherent Pi+ Production**

- Select CC coherent pion candidates with ~47% expected purity by requiring:
  - CC interaction with 2 tracks, one muon and one  $\pi^+$ -like track
  - low vertex activity
  - low momentum transfer: Q<sup>2</sup><0.1 GeV<sup>2</sup>
- Use control samples to tune momentum scale, nQE/QE ratio, strength of nuclear effects
- 113 events selected, consistent with background-only



• Upper limit (90% CL) on CC coherent pion cross section normalized to CC inclusive:

 $\sigma(CC \cosh \pi)/\sigma(CC) < 0.60 \cdot 10^{-2}$ 

at  $E_{y} \sim 1.3 \text{ GeV}$ 

(Source: Phys. Rev.Lett. 95, 252301 (2005))

## **MiniBooNE NC Coherent Pi0 Production**

- Select ~30,000 events by requiring no decay electrons, e/ $\mu$  and e/ $\pi^0$  likelihood ratios favor e and  $\pi^0$  hypotheses, respectively, m $_{\gamma}$  > 50 MeV
- Perform 2D fit in  $m_{_{\gamma\gamma}}$  and  $E_{_{\pi}}(1\text{-}cos(\theta_{_{\pi}}))$  variables to extract coherent, resonant, background fractions in the sample
- Monte Carlo fit templates reweighted according to  $\pi^0$  momentum distribution measured in NC  $\pi^0$  rate analysis discussed earlier

• Coherent fraction: N(coh  $\pi^0$ ) / (N(coh  $\pi^0$ ) +N(res  $\pi^0$ )) = (18.0  $\pm$  1.2  $\pm$  1.0)%



18

#### **Summary of Coherent Pion Production Since Nulnt01**

- Two new low-E results, including first CC result
- Plot shows both NC and CC coherent cross sections normalized to NC and carbon, assuming  $\sigma(A)=A^{2/3}\sigma(N)$  and  $\sigma(CC)=\sigma(NC)/2$
- Aachen (A~27) nu/nubar NC data (black)
- GGM (A~30) nu/nubar NC data (red)
- K2K-SciBar nu CC data (blue)
- MiniBooNE nu NC data from prelim. resonant xsec measurement (2005) and prelim. coherent fraction measurement (2006) (green)



- Tension between MiniBooNE observation and K2K-SciBar upper limit?
- More experimental input necessary to guide theory: many models on the market, yielding very different predictions
- Look forward to new NuInt07 coherent pion production results (Session 6 and poster):
  - J. Link, "Neutral Current pi0 Production at MiniBooNE"
  - V. Nguyen, "Angular Dependence of pi0 Production in the MB Antineutrino Data"

# From Resonance Region to Deep Inelastic Scattering

• DIS: dominant process for  $E_{\nu}>3$  GeV. Allows to probe nucleon structure



- Measure  $E_{\mu}$ ,  $\theta_{\mu}$ ,  $E_{H}$
- Momentum transfer:  $Q^2 = 4E_v E_u \sin^2(\theta_u/2)$
- Bjorken scaling variable:  $x = Q^2 / (2ME_H)$
- Inelasticity:  $y = (E_H M) / E_y$
- Hadronic mass:  $W^2 = M^2 + 2ME_{\perp} Q^2$
- •Differential neutrino cross sections  $d^2\sigma/(dxdy)$  can be expressed in terms of structure functions  $F_2(x,Q^2)$ ,  $xF_3(x,Q^2)$ , and  $R_L(x,Q^2)$
- Smooth transition from resonance production to DIS regime via Bodek-Yang duality model, tuned to data in low-Q<sup>2</sup> overlap region
- Neutrino generators simulate low multiplicity hadronic final states up to some  $W\sim1.4-2$  GeV with resonance formalism, turn to DIS formalism for higher W

#### **MINOS Near DIS Distributions**

• Large data sample of DIS (W>2 GeV) and transition region (1.4<W<2 GeV) events



- Require  $E_{_{\rm H}} = v < 1$  GeV, and extract flux for  $E_{_{_{\rm V}}} > 5$  GeV
- From flux and event distributions, get  $d^2\sigma/(dxdy)$  for neutrinos and antineutrinos
- -> extract F2 and xF3 in neutrino-iron scattering

# **NOMAD/NuTeV Differential Cross-Sections**

- Measure the CC differential cross section in v-C interactions for  $6 < E_v < 300$  GeV, by requiring:
  - $\mu$ -ID,  $E_{\mu}$  > 2.5 GeV
  - $E_{H} > 3 \text{ GeV}$
  - $Q^2 > 1 \text{ GeV}^2$
- Absolute xsec normalization from world average in  $40 < E_v < 200 \text{ GeV}$
- Measurement in (E<sub>v</sub>,x,y) bins, values corrected for bin centering
- First measurement of inelastic CC cross section on a carbon target and large Q<sup>2</sup> (~13 GeV<sup>2</sup>)

(Source: R. Petti, NuInt05)

 At higher energies: recent NuTeV precision structure functions measurements, with neutrinos and antineutrinos on Fe

(Source: M. Tzanov, NuFact06)



#### **Summary of Transition Region Progress Since NuInt01**

MINOS and NOMAD: able to cover regions of phase space (high x, low/medium  $Q^2$ ) for structure functions measurements that are complementary to charged lepton scattering and beyond past neutrino scattering experiments. Relevant for relatively

low energy neutrino beams



(Source: D. Naples, APS-DPF 2006)



(Source: R. Petti, NuInt05)

- Look forward to new NuInt07 transition region/DIS results (Sessions 6 and8):
  - C. Mariani, "Neutral Pion Production Cross Sections at K2K"
  - D. Naples, "NuTeV Structure Function Measurements"

# **Nuclear Effects**



- Fermi motion and binding energy of target nucleons
- -> changes interaction kinematics
- Pauli suppression of the phase space available to final state nucleons
- -> causes Q<sup>2</sup>-dependent suppression of the cross-sections
- Final state interactions (FSI) inside the nucleus, such as proton re-scattering or pion absorption
- -> can change composition and kinematics of the hadronic part of the final state
- Effect of Fermi motion and Pauli suppression generally simulated according to simple zero-temperature *relativistic Fermi gas model* for the target neutrons and protons, Various choices for FSI treatment, tuned on  $\pi/p$  data
- Depending on energy thresholds and nuclei, understanding nuclear de-excitation via gamma ray emission may also be needed

#### **Nuclear De-excitation in K2K-1KT**

- $\sim$ 40% of neutrino interactions off a nucleon in oxygen accompanied by  $\sim$ 6 MeV gamma ray emission from nuclear de-excitation
- Select ~3,000 gamma candidate events by requiring low PMT hit multiplicity, containment, single Cherenkov track hit topology. Estimated NCEL purity: ~58%



- 6 MeV peak clearly seen with neutrinos
- After correcting for multi-interactions per spill:

 $N(data)/N(MC) = 1.23 \pm 0.04 \pm 0.06$  (detector systematics only)

 MC prediction is normalized with respect to CC inclusive measurement

(Source: J. Kameda, NuInt05)

# MiniBooNE+K2K Low-Q2 Interactions

- Low-Q<sup>2</sup> interactions: mostly affected by nuclear effects, e.g. Pauli suppression
- Early analyses of various low- $Q^2$  samples at both MiniBooNE and K2K showed a deficit with respect to predictions for  $Q^2 < 0.2 \text{ GeV}^2$
- Experiments have followed distinct approaches to tune low-Q<sup>2</sup> predictions
- *MiniBooNE:* introduce extra degree of freedom in relativistic Fermi gas model to control strength of Pauli suppression

-> nuclear physics explanation



- *K2K*: most (if not all) of the discrepancy goes away by assuming no coherent pion production
- -> neutrino interaction explanation



(Source: J. Conrad, B. Louis, FNAL Seminar, 2007)

(Source: Phys. Rev.Lett. 95, 252301 (2005))

### **Nuclear Effects in LAr50**

• Expose 50 lt. LAr TPC to CERN multi-GeV wide-band beam, using NOMAD as muon spectrometer



- Select "golden" CCQE sample of 86 events with ~80% estimated purity
- *Missing transverse momentum* sensitive to Fermi motion, proton re-scattering and pion absorption inside the nucleus
- Clear evidence seen for nuclear effects beyond Fermi motion and Pauli suppression



(Source: Phys. Rev. D74, 112001 (2006))

Run 103 Event 4142

# **Nuclear Effects Progress Since NuInt01**

• Experiments got not only better at correcting for nuclear effects, but also at trying to *quantitatively* evaluate associated uncertainties. Mostly new since NuInt01. Some examples below on nuclear effects uncertainties in recent analyses:

| Experiment | Quantity                                      | Status      | Approx. uncertainty from | Approx. uncertainty from |
|------------|-----------------------------------------------|-------------|--------------------------|--------------------------|
|            |                                               |             | Fermi gas model          | nuclear FSI              |
| K2K-SciFi  | CCQE $M_A~(Q^2>0.2~{\rm GeV^2})$              | published   | -                        | ±3%                      |
| K2K-SciFi  | CCQE $M_A$ $(Q^2 > 0)$                        | published   | ±5%                      | ±3%                      |
| K2K-1KT    | $\sigma(NC\pi^0)/\sigma(CC)$                  | published   | -                        | ±2%                      |
| MiniBooNE  | $\sigma(NC\pi^0)$                             | preliminary | ±15%                     | ±15%                     |
| MiniBooNE  | $\sigma(CC\pi^+)/\sigma(CCQE)$                | preliminary | ±5%                      | ±5%                      |
| K2K-SciBar | $\sigma(\text{CC coh }\pi)/\sigma(\text{CC})$ | published   | -                        | $\pm 0.2\%$ (abs.)       |
| MiniBooNE  | $\sigma(NC \cosh \pi)/\sigma(NC\pi^0)$        | preliminary | < ±8%                    | < ±3%                    |

- Tendency to be conservative, also to cover possible model deficiencies (e.g. relativistic Fermi gas model)
- Look forward to new NuInt07 nuclear effects results with neutrinos (Sessions 5,9):
  - T. Katori, "Charged-Current Interaction Measurements in MiniBooNE"
  - A. Curioni, "Neutrino Interactions in LArTPCs"

# **Summary**

#### Review progress in neutrino scattering measurements since NuInt01:

- Several new cross section results, spanning all relevant channels (CCQE, RES, COH, DIS), and including study of nuclear effects with neutrinos
- Samples of higher statistics allow for more detailed differential cross sections as well
- Large error bars may be deceiving, but tend to represent more accurately current systematic uncertainties affecting the measurements, with respect to what was done in the past
- Nevertheless, recent results not always consistent with each other and with past ones, pointing to either non-understood experimental biases, or deficiencies in the models used to analyze the data. Need to solve this to get to the precision era in few-GeV neutrino-nucleus scattering

#### The future is bright:

- NuSNS, SciBooNE, T2K Near, MINERvA, MINOS Near, NovA Near,... (Session 3)
- Synergies established with nuclear physics, charged lepton DIS and theory communities